Immunization with Live Human Rhinovirus (HRV) 16 Induces Protection in Cotton Rats against HRV14 Infection
نویسندگان
چکیده
Human rhinoviruses (HRVs) are the main cause of cold-like illnesses, and currently no vaccine or antiviral therapies against HRVs are available to prevent or mitigate HRV infection. There are more than 150 antigenically heterogeneous HRV serotypes, with ∼90 HRVs belonging to major group species A and B. Development of small animal models that are susceptible to infection with major group HRVs would be beneficial for vaccine research. Previously, we showed that the cotton rat (Sigmodon hispidus) is semi-permissive to HRV16 (major group, species HRV-A virus) infection, replicating in the upper and lower respiratory tracts with measurable pathology, mucus production, and expression of inflammatory mediators. Herein, we report that intranasal infection of cotton rats with HRV14 (major group, species HRV-B virus) results in isolation of infectious virus from the nose and lung. Similar to HRV16, intramuscular immunization with live HRV14 induces homologous protection that correlated with high levels of serum neutralizing antibodies. Vaccination and challenge experiments with HRV14 and HRV16 to evaluate the development of cross-protective immunity demonstrate that intramuscular immunization with live HRV16 significantly protects animals against HRV14 challenge. Determination of the immunological mechanisms involved in heterologous protection and further characterization of infection with other major HRV serotypes in the cotton rat could enhance the robustness of the model to define heterotypic relationships between this diverse group of viruses and thereby increase its potential for development of a multi-serotype HRV vaccine.
منابع مشابه
Influenza Receptors in Cotton Rats
For over three decades, cotton rats have been a preferred model for human Respiratory Syncytial Virus (RSV) infection and pathogenesis, and a reliable model for an impressive list of human respiratory pathogens including adenoviruses, para influenza virus, measles, and human metapneumo virus. The most significant contribution of the cotton rat to biomedical research has been the development of ...
متن کاملRole of NF-kappa B in cytokine production induced from human airway epithelial cells by rhinovirus infection.
Infection of human epithelial cells with human rhinovirus (HRV)-16 induces rapid production of several proinflammatory cytokines, including IL-8, IL-6, and GM-CSF. We evaluated the role of NF-kappaB in HRV-16-induced IL-8 and IL-6 production by EMSA using oligonucleotides corresponding to the binding sites for NF-kappaB in the IL-6 and IL-8 gene promoters. Consistent with the rapid induction of...
متن کاملMucosal immunization with recombinant adenoviruses: induction of immunity and protection of cotton rats against respiratory bovine herpesvirus type 1 infection.
To facilitate the evaluation of vaccines against bovine herpesvirus type 1 (BHV-1), a cotton rat model of intranasal (i.n.) BHV-1 infection was established. Cotton rat lung cells were similar to bovine cells in their ability to support BHV-1 replication in vitro. Furthermore, i.n. inoculation of cotton rats with BHV-1 resulted in pulmonary lesions comparable to BHV-1 infection in cattle. Using ...
متن کاملStructure of human rhinovirus complexed with Fab fragments from a neutralizing antibody.
We have determined the structure of a human rhinovirus (HRV)-Fab complex by using cryoelectron microscopy and image reconstruction techniques. This is the first view of an intact human virus complexed with a monoclonal Fab (Fab17-IA) for which both atomic structures are known. The surface area on HRV type 14 (HRV14) in contact with Fab17-IA was approximately 500 A2 (5 nm2), which is much larger...
متن کاملHuman airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection.
Human rhinovirus (HRV) infections trigger exacerbations of asthma and chronic obstructive pulmonary disease (COPD) and are associated with lymphocytic infiltration of the airways. We demonstrate that infection of primary cultures of human airway epithelial cells, or of the BEAS-2B human bronchial epithelial cell line, with human rhinovirus type 16 (HRV-16) induces expression of CXCL10 [IFN-gamm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017